Heterosis Increases Fertility, Fecundity, and Survival of Laboratory-Produced F1 Hybrid Males of the Malaria Mosquito Anopheles coluzzii

نویسندگان

  • Nkiru E Ekechukwu
  • Rowida Baeshen
  • Sékou F Traorè
  • Mamadou Coulibaly
  • Abdoulaye Diabate
  • Flaminia Catteruccia
  • Frédéric Tripet
چکیده

The success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically-modified male mosquitoes critically depends on mating between laboratory-reared males and wild females. Unfortunately, mosquito colonization, laboratory rearing, and genetic manipulations can all negatively affect male competitiveness. Heterosis is commonly used to produce domestic animals with enhanced vigor and homogenous genetic background and could therefore potentially improve the mating performance of mass-reared male mosquitoes. Here, we produced enhanced hybrid males of the malaria mosquito Anopheles coluzzii by crossing two strains colonized >35 and 8 years ago. We compared the amount of sperm and mating plug proteins they transferred to females, as well as their insemination rate, reproductive success and longevity under various experimental conditions. Across experiments, widespread adaptations to laboratory mating were detected in the older strain. In large-group mating experiments, no overall hybrid advantage in insemination rates and the amount of sperm and accessory gland proteins transferred to females was detected. Despite higher sperm activity, hybrid males did not appear more fecund. However, individual-male mating and laboratory-swarm experiments revealed that hybrid males, while inseminating fewer females than older inbred males, were significantly more fertile, producing larger mating plugs and drastically increasing female fecundity. Heterotic males also showed increased longevity. These results validate the use of heterosis for creating hybrid males with improved fitness from long-established inbred laboratory strains. Therefore, this simple approach could facilitate disease control strategies based on male mosquito releases with important ultimate benefits to human health.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for carry-over effects of predator exposure on pathogen transmission potential.

Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with disc...

متن کامل

Fitness of anopheline mosquitoes expressing transgenes that inhibit Plasmodium development.

One potential strategy for the control of malaria and other vector-borne diseases is the introduction into wild vector populations of genetic constructs that reduce vectorial capacity. An important caveat of this approach is that the genetic construct should have minimal fitness cost to the transformed vector. Previously, we produced transgenic Anopheles stephensi expressing either of two effec...

متن کامل

The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity.

Studies of invertebrate-parasite interactions frequently report that infection reduces host fecundity. The extent of the reduction is likely to be determined by a wide range of host and parasite factors. We conducted a laboratory experiment to evaluate the role of parasite genetics and infection genetic diversity on the fecundity of mosquitoes carrying malaria parasites. The malaria vector Anop...

متن کامل

Dose and developmental responses of Anopheles merus larvae to salinity.

Saltwater tolerance is a trait that carries both ecological and epidemiological significance for Anopheles mosquitoes that transmit human malaria, as it plays a key role in determining their habitat use and ecological distribution, and thus their local contribution to malaria transmission. Here, we lay the groundwork for genetic dissection of this trait by quantifying saltwater tolerance in thr...

متن کامل

Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship.

The mosquito midgut plays a central role in the sporogonic development of malaria parasites. We have found that polyclonal sera, produced against mosquito midguts, blocked the passage of Plasmodium falciparum ookinetes across the midgut, leading to a significant reduction of infections in mosquitoes. Anti-midgut mAbs were produced that display broad-spectrum activity, blocking parasite developm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015